Instruction for exercise 3

Title: Study of the magnetic field

Theoretical topics

- 1. Describe the parameters of the magnetic field: field strength, magnetic induction, magnetization.
- 2. Discuss the magnetic field of the rectilinear conductor and the solenoid through which the current flows.
- 3. Present the essence of the Hall effect quantitatively, using the model of free electrons in metals.
- 4. Magnetic properties of matter (diamagnetism, paramagnetism, ferromagnetism).

Topics for a test

- 1. Explain what the magnetic field is.
- 2. What is the impact of the magnetic field on living organisms?

The purpose of the exercise:

Magnetic field testing, measurement of magnetic induction values inside solenoid, calculating the magnetic induction value of a given source geometry. Study of magnetic field source.

Instruments:

The measurement set shown in Fig.1 consists of two independent circuits: the Hall sensor with a power supply, and the coil circuit with an independent power supply whose magnetic field we are examining.

Fig.1 Measuring set: 1- teslameter, 2- Hall probe, 3- Solenoid power supply, 4- solenoid (coil), 5 – coil elevator, 6- ammeter

Technical Introduction:

- 1. Set the tripod with the Hall probe on the linear gauge.
- 2. Set the coil lifter at the end of the linear gauge.
- 3. Connect the Hall probe to the teslameter with the output for a constant magnetic field, select the range 20 mT.
- 4. Connect the coil of known parameters (length L, radius R, number of coils n) and ammeter for power supply with the DC output.

Warning! - The current in the coil cannot exceed 1A!

- 5. Measure the magnetic induction along the axis of the coil moving the Hall probe in 1 cm increments, at a fixed current value in the coil.
- 6. Perform the measurements as in point 5 but for the opposite directed current flow. The measurements described in points 5 and 6 should be repeated three times. As a result take the average value.
- 7. Measure the magnetic induction for a fixed position (in half length of the coil z = 0) of the Hall probe, changing the current flow in the coil.

Measurements and reporting:

1. Make a graph of the dependence: B = f(z) - the magnetic induction as a function of the coordinate (z) of the position of the Hall probe along the axis of the coil when: I = const., N = const., R = const. and compare with the theoretical values of magnetic induction, calculated according to the following equation:

$$B(z) = \frac{\mu_0 \cdot I \cdot n}{2L} \left(\frac{a}{\sqrt{R^2 + a^2}} - \frac{b}{\sqrt{R^2 + b^2}} \right),$$

where $\mu_0 = 1.256^{\frac{11}{2}} 10^{-6} \frac{T \cdot m}{A}$ is the magnetic permeability of the vacuum, $a = z + \frac{L}{2}$, $b = z - \frac{L}{2}$.

2. Draw a dependence graph of the magnetic induction on the current in the coil - $\mathbf{B} = \mathbf{f}(\mathbf{I})$, at the position of the Hall probe in the center of the coil (z = 0) and compare with the values theoretically calculated according to the expression:

$$B_{z=0}(I) = \frac{\mu_0 \cdot I \cdot n}{\sqrt{4R^2 + L^2}}$$

3. Calculate a measurement error of magnetic induction ΔB by means of the formula presented below and discuss the results.

Appendix Estimation of measurement error

Calculate a measurement error of magnetic induction using the equation:

$$\Delta B_{z=0}(I) = \frac{\mu_0 \cdot n \cdot \Delta I}{\sqrt{4R^2 + L^2}} + \frac{4R \cdot \mu_0 \cdot I \cdot n \cdot \Delta R}{\sqrt{\left(4R^2 + L^2\right)^3}} + \frac{L \cdot \mu_0 \cdot I \cdot n \cdot \Delta L}{\sqrt{\left(4R^2 + L^2\right)^3}}$$

assuming the following scale errors:

 $\Delta I=0.07A$, $\Delta L=1$ mm, $\Delta R=1$ mm.